


BOM Enhancements
Mascidon LLC
June 2023

Table of Contents
BOM Enhancements	5
Figure 1.1 Production BOM – SAP	5
Figure 1.2 BOM Used In Examples	6
Indented BOM	7
Figure 2.1 Standard SAP BOM Report	7
Figure 2.2 Indented BOM From Mascidon	8
Figure 2.3 Modified Indented BOM Report	9
Figure 2.4 Adding Gold Arrow to UF BOM-02	10
Figure 2.5 Popup Report Question	10
Where Used Report	10
Figure 2.6 Where Used Indented Report	11
Figure 2.7 Where Used Documents Report	11
BOM Construction	12
Implementation of BOM Approval	12
Figure 2.8 Item Property Name Assignment	13
Figure 2.10 Visibility of Property 64 Setting	14
Figure 2.11 BOM Visibility of Property 64 Setting	14
Figure 2.12 Indented BOM – Approval Status Report	15
Appendix A – Technical	16
SAP File Changes	16
Boyum – B1 Validations	17
Figure A-1 List of B1 Validations	17
BOM Enhancement Queries (Validation)	17
Figure A-2 BOM Enhancement Accessed From Item Master	17
Figure A-3 BOM-01 UF Decides Which Reports to Run	18
Figure A-4 BOM-02 UF Showing Indented BOM	18
Figure A-5 BOM-02 Where Used Report	23
Figure A-6 Where Used Documents Report	26
BOM Where Used and Indented BOM From BOM Form	27
Figure A-7 Validation Called from the BOM Form With BOM Reports Button	27
Figure A-8 Approval Status Report	27
Figure A-9 Approval Process	28
BOM Report Access From Forecast	29
Figure A-10 Access BOM Report From MRP Forecast Form	29
BOM Report from Sales Document – Quote	29
Figure A-11 Indented BOM Reporting from Sales Quote	30
BOM Report from Sales Document – Sales Order	30
Figure A-12 Indented BOM Reporting from Sales Order	30
BOM Report from Sales Document – Delivery Order	31
Figure A-13 Indented BOM Reporting from Delivery Order	31
BOM Report from Sales Document – Invoice	31
Figure A-14 Indented BOM Reporting from Invoice	32
BOM Reports – from Purchase Order Goods Received	32
Figure A-15 Where Used Reporting from PO Goods Received	32
BOM Reports – from Purchase Order	33
Figure A-16 Where Used Reporting from PO	33
Engr Revision Placed on PDO During Add	34
Figure A-17 Placing the Engineering Revision on the PDO for the Item Manufactured	34
Figure A-18 Macro Placing the Engineering Revision on the PDO	34
Set Engineering Revision for Items Being Sold	34
Figure A-19 Sales Documents – Setting the Engineering Revision	35
Figure A-20 Setting the Engineering Revision on Sales Documents	35
Lookup Engineering Revisions for a Customer – Part	35
Figure A-21 Show Engineering Revision History By Customer – Part	36
Figure A-22 Show Engineering Revision History By Customer – Part	36
Figure A-23 Engineering Revision History By Customer – Part	36
Resource Lookup	37
Figure A-24 Validation Called When Resource Lookup Button Clicked	37
Figure A-25 Resource Lookup Report	37
Color the item field when property 64 is set – Item Master	37
Figure A-26 Validation for Color of Item	38
Figure A-27 Set Background Color to Red	38
Color the item field when property 64 is set – BOM Form	38
Figure A-28 Validation for Color of Item	39
Figure A-29 Set Background Color to Red	39
Figure A-30 Set Background Color to White	40
Item Placement Tool Changes	40
Figure A-31 Sales Order Form – Add Button ‘BOM Reports’	40
Figure A-32 Sales Order Quote Form – Add Button ‘BOM Reports’	41
Figure A-33 Production Order Form – Add Engineering Revision UDF	41
Figure A-34 Delivery Order Form – Add Button ‘BOM Reports’	41
Figure A-35 Business Partner Form – Add Button ‘Engr Rev Lookup’	42
Figure A-36 Item Master Form – Add Button + UDF	42
Figure A-37 BOM Form – Add Button + 2 UDFs	42
Figure A-38 Forecast Form – Add Button	43
Figure A-39 A/R Invoice Form – Add Button	43
Figure A-40 Purchase Order Form – Add Button	43
Figure A-41 Purchase Order Goods Receipt Form – Add Button	44
Figure A-42 Resource Master Form – Add Button	44





[bookmark: _Toc138240193]BOM Enhancements
The standard SAP BOM provides a BOM report showing all of the indent levels.  This report is useful but cannot be extended by the user. It shows the component parts at each level, the quantity required and the price.  What if you want to see more detail?  Mascidon’s BOM enhancement module provides more detailed BOM reports.  Our reports have more information – AND – they can be extended by a user with knowledge of queries / SQL.  This extension was developed using SQL and Boyum functionality.
How are BOM’s used within SAP?  There are ‘production’, ‘assembly’ and ‘sales’ BOMs.  While the enhancements provided work equally well within any BOM type, my concentration is on the ‘Production’ BOM that is used in the manufacturing processes.
These are my assumptions:  
· A person or a team of people are responsible to BOM development and maintenance.  This is generally delegated to the engineering department.
· Engineering periodically makes improvements to item design – and this may or may not result in BOM changes.  At the very least, engineering tracks ‘revisions’ – hopefully tied to CAD drawings or an engineering management software product.
The BOM enhancements are intended to assist with the tracking of the creation and maintenance of BOMs.  The BOM enhancements become more useful as your BOMs become more complex.  A 10 level BOM requires more effort to implement and maintain than a single level BOM.  If making a large piece of capital equipment it may take several weeks to develop the BOM – and the team responsible for this development need to understand how far along in the process they are currently.
Before going into the details of the enhancements, let’s review the standard SAP BOM functionality.  The BOM form is shown in Figure 1.1.  
[image: ]
[bookmark: _Toc138240194]Figure 1.1 Production BOM – SAP
Defining a BOM entails creating the BOM one ‘level’ at a time.  The BOM I use for testing is shown in Figure 1.2.  It has several features that need to be discussed.  The first is that 2 different assemblies used the component part B-400A  B-300A and B-200F.  This is a common happenstance in large BOMs.  The second is that 2 manufactured parts – B-200B and B-200C – use the same manufactured component B-300A.  Again, this is a common occurrence in large BOMs.  It is a 4 level BOM.
B-100
B-200A
B-100A
B-100B
B-100C
B-200B
B-300A
B-200C
B-200D
B-200E
B-200F
B-300C
B-300B
B-400B
B-400A
2
3
1
2
2
1
2
2
4
2
15
4
1
1
1
4

[bookmark: _Toc138240195]Figure 1.2 BOM Used In Examples

BOMs are input into SAP on a level-by-level basis, each assembly is entered separately.  In our example BOM, the user enters the BOM with 10 screens, one for each of these assemblies:
· B-100 is the final assembly
· B-100A is a level 1 assembly
· B-100B is a level 1 assembly
· B-100C is a level 1 assembly
· B-200B is a level 2 assembly
· B-200C is a level 2 assembly
· B-200D is a level 2 assembly
· B-200F is a level 2 assembly
· B-300A is a level 3 assembly
· B-300B is a level 3 assembly
My example is somewhat simplistic.  Picture an assembly with 30 or 40 components.  Engineering must be careful to properly enter each assembly.  They need to know that the BOMs are accurate.  One approach would be to ‘Approve’ the BOM on an assembly-by-assembly basis.  Our BOM enhancements includes this approval process.
Over time there will be replacement assemblies or components within a BOM .  The reason could be better materials, better design, correction of parts design – it does matter - this will occur.  Many times the ‘part number’ for the BOM component items doesn’t change – you simply have a newer ‘revision’ of the part. The BOM enhancement process addresses this concern with the inclusion of a revision number for each item.  As part of this enhancement, the ‘revision’ number is included in the invoice line item within SAP for each item sold.  If a customer calls 2 years later and asks about an item they were sold the customer service person can look up the ‘engineering revision’ for the original part sold.   
All of the BOM enhancements provided can be altered by the user – they are available as ‘Boyum’ functions.  This means that an indented BOM report or an indented where used report can be modified by the user to meet their needs.
[bookmark: _Toc138240196]Indented BOM
Standard SAP provides an indented BOM as shown in Figure 2.1.  The BOM depicted is 4 levels deep and consists of 58 items.  Of the 58 items there are 6 subassemblies.  The data provided in this report cannot be altered to include additional information (or remove undesired information).
[image: ]
[bookmark: _Toc138240197]Figure 2.1 Standard SAP BOM Report

An Indented BOM report is available with Mascidon’s BOM enhancements.  It is available from these screens:  Item Master; Bill of Materials; Sales Quote; Sales Order; Delivery Order; A/R Invoice; MRP Forecast.  Obviously, it is available from anywhere you can drill to the item master screen.  Mascidon’s  ‘standard ‘ indented BOM report is shown in Figure 2.2.
A similar indented report using Mascidon’s enhancements can be displayed from either the item master screen or the BOM entry screen. This report is shown in Figure 2.2.  It has 60 line items – because the 2 resource steps in the BOM are included in the report.  
[image: ]
[bookmark: _Toc138240198]Figure 2.2 Indented BOM From Mascidon

One of the first things you notice is that Mascidon’s indented BOM includes the ‘Resource’ information. The Boyum Universal Function (SQL) that defines the format of the Indented BOM is shown below (only the display portion of the SQL):
	select s.itemdisp as 'Indented Item'
		, s.fg as 'BOM FG'
		, s.parent as 'Parent Item'
		, ii.itemname as 'Parent Description'
		, s.component as 'Component Item'
		, case when cc.itemname is null then r.resname else cc.itemname end as 'Component Description'
		, s.TLevel as 'Level in BOM'
		, s.qtyreqd as 'Qty Reqd'
		, isnull(c.onhand,0) as 'Component On Hand'
		, isnull(c.onorder,0) as 'Component on order'
		, isnull(c.iscommited,0) as 'Component Committed'
		, (isnull(c.onhand,0) + isnull(c.onorder,0) - isnull(c.iscommited,0)) as 'Net On Hand'
		, i.onhand as 'Parent On Hand' 
		, s.childnum
		, s.recnum
	from #stack s
	left join oitw i on i.itemcode = s.parent and i.whscode = @whs
	left join oitm ii on ii.ItemCode = i.itemcode
	left join oitw c on c.itemcode = s.component and c.whscode = @whs
	left join oitm cc on cc.itemcode = c.itemcode
	left join orsc r on r.rescode = @component
	order by s.recnum

Let’s assume that we should include the inventory flag ‘Phantom’ and the default vendor id for each purchased component.  The Universal Function BOM-02 (Indented BOM) would be modified as follows:
	select s.itemdisp as 'Indented Item'
		, s.fg as 'BOM FG'
		, s.parent as 'Parent Item'
		, ii.itemname as 'Parent Description'
		, s.component as 'Component Item'
		, case when cc.itemname is null then r.resname else cc.itemname end as 'Component Description'
		, c.phantom as ‘Phantom’
		, c.cardcode as ‘Default Vendor’
		, s.TLevel as 'Level in BOM'
		, s.qtyreqd as 'Qty Reqd'
		, isnull(c.onhand,0) as 'Component On Hand'
		, isnull(c.onorder,0) as 'Component on order'
		, isnull(c.iscommited,0) as 'Component Committed'
		, (isnull(c.onhand,0) + isnull(c.onorder,0) - isnull(c.iscommited,0)) as 'Net On Hand'
		, i.onhand as 'Parent On Hand' 
		, s.childnum
		, s.recnum
	from #stack s
	left join oitw i on i.itemcode = s.parent and i.whscode = @whs
	left join oitm ii on ii.ItemCode = i.itemcode
	left join oitw c on c.itemcode = s.component and c.whscode = @whs
	left join oitm cc on cc.itemcode = c.itemcode
	left join orsc r on r.rescode = @component
	order by s.recnum

Making this small change to the BOM-02 Universal Function SQL code changes the report to the report shown in Figure 2.3.  The items with a default vendor are easily defined.  In addition, you can see that item B-200F is a phantom part. Note: you could add a gold arrow to the ‘Default Vendor’ column by changing the BOM-02 Universal Function as shown in Figure 2.4
[image: ]
[bookmark: _Toc138240199]Figure 2.3 Modified Indented BOM Report



[image: ]
[image: ]
[bookmark: _Toc138240200]Figure 2.4 Adding Gold Arrow to UF BOM-02

The changes to the code are simple for anyone familiar with SQL and SAP.  That’s not everyone.  But you can also contract with Mascidon to modify the SQL reports.  All of the reports in this module can be similarly modified.
The Indented BOM can be accessed from Item Master, Bill of Materials, Sales Quote, Sales Order, Delivery Order, A/R Invoice, and MRP Forecast by clicking on the button on the bottom of the form ‘BOM Reports’.    When accessed from all but the Item Master screen, the Indented BOM report is simply displayed.  When accessed from the Item Master screen, the popup shown in Figure 2.5 is presented and the user selects ‘Indented BOM’.
[image: ]
[bookmark: _Toc138240201]Figure 2.5 Popup Report Question

[bookmark: _Toc138240202]Where Used Report
An indented BOM shows the finished product from the top level to the lowest level.  The where used indented reports show the indent from the lowest level in the BOM to the finished goods level.  This report is available in 2 formats.  The first is a simple ‘where used’ report – an indented BOM from the low level part displayed on the item master screen upwards to associated finished goods.  This report is shown in Figure 2.6.  One of the main uses of this report is to track down potential production problems.  For instance, a customer may send back a product because it has a defect.   Your engineering team analyzes the defective part and determines that one of the components has a defect.  Then the engineering team displays the where used report.  This gives production the information on all higher level assemblies that may have used this defective part.
[image: ]
[bookmark: _Toc138240203]Figure 2.6 Where Used Indented Report

The second Where-used report is the ‘Where Used Documents’ report.  This report uses the data from the Where-Used indented report to show all of the documents related to the parts.  This is an important report if you have found a problem with a raw material, component or sub-assembly and now want to determine all manufacturing and finished goods that need to be reviewed.  Alternatively, if you have decided to change out a part in the BOM you need to know all of the in process parts that may be affected.  There are several related documents that are reported as part of the where used documents report.  These are:
· Purchasing Orders
· Sales Orders
· Production Orders
This report is shown in Figure 2.7.  The report shows open documents associated with the component part B-400A.  This includes a PO for the part itself and a sales order for the finished good using this component.
[image: ]
[bookmark: _Toc138240204]Figure 2.7 Where Used Documents Report

The where used reports can be accessed from the item master screen, purchase order screen and the PO goods received screen.  
[bookmark: _Toc138240205]BOM Construction
For new product design, how does the engineering staff develop the SAP BOM?  Let’s assume they have been doing the engineering design using a CAD product and an engineering documentation tool.  They have the design of the product completed.  At this point they need to determine the ‘parts’ and BOM connections that need to be defined in SAP.  
There are decisions to be made.  For instance, if the engineering design calls for parts to be stamped in a progressive die, do you really want the ‘intermediate’ parts defined within SAP?  i.e. you feed raw materials / components into a progressive die and an intermediate part is manufactured and then immediately used to produce a part that is further processed in the next hit of the progressive die. Defining the intermediate part as a phantom part in SAP is one solution to match the SAP BOM closely to the engineering BOM.  However, SAP will never have on hand of this intermediate part and if ever the progressive die process is interrupted, this intermediate part is likely thrown away.  So this intermediate part is really not required in SAP – but could be included. Other than that sort of decision, the engineering BOM is used to create the SAP BOM.
Another decision to be made is – how much use of ‘phantom’ parts should be included?  Aside from the example of the progressive die ‘parts’, production reporting is not required for every part. For instance, if manufacturing processes from raw material to finished goods level occurs in a couple of hours – why gather and report production at low levels of assembly?  It takes time and effort to collect production counts – and time and effort to create production orders.  Decisions on a flat BOM, BOMs that include many phantom parts, and inclusion of resource costs in the BOM need to be made by the engineers, the production managers, and the accounting personnel.
After the decisions on how complex / complete the BOM should be have been made, entering the BOM within SAP can be started from either the top most level of the BOM or from the bottom of the BOM upwards.  SAP’s BOMs are defined either way.  Let’s assume we have a finished product that has several major sub-assemblies.  My suggestion is to have the BOM enhancement from Mascidon show the approval status of the finished product and each of the major sub-assemblies.  
Before the BOM can be constructed each of the ‘items’ required for this finished good (as obtained from the engineering BOM data) needs to be entered into the SAP item master. Continuing our example, when the finished goods part and the major sub-assembly parts are created these parts need to be flagged as ‘BOM Approval in-progress’.  When each sub-assembly has been entered into SAP and has been reviewed, this flag is turned off.  The key is that the approval flag information must be visible to the engineers. 
[bookmark: _Toc138240206]Implementation of BOM Approval
In order to facilitate the BOM approval status a flag needs to be set for the item that is the parent.  I have arbitrarily used item property 64 for this purpose.  This could be changed if you are already using this particular item property.  The first step is to name the item property appropriately. Figure 2.8 shows the Item Property name assignment.  To access this screen: Administration  Setup  Inventory  Item Properties.  Then navigate to property 64 and change the wording as shown.


[image: ]
[bookmark: _Toc138240207]Figure 2.8 Item Property Name Assignment

From the item master I have set the property 64 ‘BOM Needs Approval’ for the part B-100 – as shown in Figure 2.9.  Then I refresh the screen for this part and the approval requirement is readily apparent because of the background coloring of the item.  Refer to Figure 2.10.
In the same manner, the bill of materials screen has this same visibility.  Refer to Figure 2.11. 

[image: ]
Figure 2.9 Setting Property 64
[image: ]
[bookmark: _Toc138240208]Figure 2.10 Visibility of Property 64 Setting

[image: ]
[bookmark: _Toc138240209]Figure 2.11 BOM Visibility of Property 64 Setting

[image: ]
[bookmark: _Toc138240210]Figure 2.12 Indented BOM – Approval Status Report


[bookmark: _Toc138240211]Appendix A – Technical
This add-on is implemented using Boyum.  
[bookmark: _Toc138240212]SAP File Changes
Use standard SAP functionality to add the following fields to the database.
Item Master
· EngrRevision – Engr Revision, Alpha 30 characters
Marketing Documents – Rows
· EngrRevision – Engr Revision, Alpha 30 characters
BOM Title
· DateApproved – Date Approved, Date Field
· ApprovedBy – Approved By, Alpha 100 characters
Production Order Title
· EngrRevision – Engr Revision, Alpha 30 characters


[bookmark: _Toc138240213]Boyum – B1 Validations
There are 15 B1 Validations associated with this enhancement.  Figure A-1 lists these.  Each of these is shown in this Appendix along with the associated Universal Functions.
[image: ]
[bookmark: _Toc138240214]Figure A-1 List of B1 Validations

[bookmark: _Toc138240215]BOM Enhancement Queries (Validation)
The validation shown in Figure A-2 is called from the item master screen when the button ‘BOM Reports’ is pressed.  The Universal Function BOM-01 shown in Figure A-3 is called.
[image: ]
[bookmark: _Toc138240216]Figure A-2 BOM Enhancement Accessed From Item Master

When the UF BOM-01 is called from the item master, it prompts the user to decide which of 3 reports to run:  Indented BOM; Where Used; or Documents.  Depending on the response to the prompt BOM-02, BOM-03 or BOM-04 UF is called.  These are shown in Figures A-4 to A-8.

[image: ]
[bookmark: _Toc138240217]Figure A-3 BOM-01 UF Decides Which Reports to Run

[image: ]
[bookmark: _Toc138240218]Figure A-4 BOM-02 UF Showing Indented BOM

The SQL associated with BOM-02 is shown below:
/*
	Indented BOM (BOM-02)

	Revised for BOM enhancements		06/14/23	dcm
	Changed logic for ease of viewing	06/16/23	dcm


*/
declare @FGitem varchar(50), @whs varchar(8), @summary varchar(1), @qty numeric(19,6), 
		@docnum int, @linenum int, @forecast varchar(16), @salesorder int,
		@CLevel int, @count int, @parentFG varchar(50),  @component varchar(50), @cod varchar(8),
		@parent varchar(50), @TLevel int, @quantity numeric(19,6),  @FG varchar(50), @frozen varchar(1),
		@disp varchar(1), @level int, @dispfull varchar(30), @dispitem varchar(50), @seq int,
		@recnum int,  @nparent varchar(50), @deliveryorder int, @invoice int, @quote int,
		@childnum int, @cchild int, @firstrec int, @msg char(1),
		@onhand numeric(19,6), @qtyreqd numeric(19,6), @whscomp varchar(8), @qtyneeded numeric(19,6), @qtyforecast numeric(19,6),
		@forecastid int, @item varchar(50), @order varchar(1), @committed varchar(1), @onorder numeric(19,6), @iscommitted numeric(19,6),
		@fgqty numeric(19,6), @qtyreqd2 numeric(19,6) , @qtyneeded2 numeric(19,6), @onhand2 numeric(19,6), @whs1 varchar(8)
	
		select @msg = 'N'

		select @disp = '*', @level = 0, @seq = 0, @qty = 1
		select @order = 'Y', @committed = 'Y'

		create table #stack 
		(  recnum int, 
			component varchar (50) COLLATE SQL_Latin1_General_CP850_CI_AS NOT NULL, 
			parent varchar (50) COLLATE SQL_Latin1_General_CP850_CI_AS NOT NULL, 
			FG varchar (50) COLLATE SQL_Latin1_General_CP850_CI_AS NOT NULL, 
			TLevel integer, 
			quantity numeric (19, 6),
			itemdisp varchar(50), 
			sequence int, 
			childnum int,
			qtyreqd numeric(19,6),
			qtyreqd2 numeric(19,6),
			fgqty numeric(19,6) ,
			onhand numeric(19,6),
			onhand2 numeric(19,6)  ) 
	
		Create index IDX_Component ON #stack(Component)
		Create index IDX_Level_Component ON #stack(tLevel,Component)
		delete #stack

		create table #Itemlist
		(parent varchar(50), whs varchar(8), qty numeric(19,6))
		Create index IDX_parent ON #itemlist(parent)

		create table #Onhand
		(item varchar(50), whs varchar(8), onhand numeric(19,6), onhand2 numeric(19,6))
		Create index IDX_item ON #onhand(item)

		create table #peggedusage
		(mfgitem varchar(50), reqd numeric(19,6))
		Create index IDX_mfgitem ON #peggedusage(mfgitem)

	if '@STORE1' ='150'   -- item master
    begin
        select @fgitem = '@STORE2' 
		select @whs = DfltWH from oitm where itemcode = @fgitem
		if isnull(@whs,'') = '' select @whs = dfltwhs from oadm
		insert into #itemlist
		values(@fgitem, @whs, 1)
    end
    if '@STORE1' ='672'   -- BOM
    begin
        select @fgitem = '@STORE2'
		select @whs = DfltWH from oitm where itemcode = @fgitem
		if isnull(@whs,'') = '' select @whs = dfltwhs from oadm
		insert into #itemlist
		values(@fgitem, @whs, 1)
    end
    if '@STORE1' ='149'   -- Quote
    begin
        select @quote ='@STORE2'
		insert into #itemlist
		select r.itemcode,  r.whscode, r.openqty
		from qut1 r
		inner join oitm i on i.itemcode = r.itemcode
		inner join oqut o on o.docentry = r.docentry
		where o.docnum = @quote and i.invntitem = 'Y'
	end
	if '@STORE1' ='139'   -- Sales Order
	begin
		select @salesorder = '@STORE2'
		insert into #itemlist
		select r.itemcode,  r.whscode, r.openqty
		from rdr1 r
		inner join oitm i on i.itemcode = r.itemcode
		inner join ordr o on o.docentry = r.docentry
		where o.docnum = @salesorder and r.openqty > 0
	end
    if '@STORE1' ='140'   -- Delivery Order
    begin
        select @deliveryorder = '@STORE2'
		insert into #itemlist
		select r.itemcode,  r.whscode, r.openqty
		from dln1 r
		inner join oitm i on i.itemcode = r.itemcode
		inner join odln o on o.docentry = r.docentry
		where o.docnum = @deliveryorder
	end
    if '@STORE1' ='133'   -- Invoice
    begin
        select @invoice = '@STORE2'
		insert into #itemlist
		select r.itemcode,  r.whscode, r.openqty
		from inv1 r
		inner join oitm i on i.itemcode = r.itemcode
		inner join oinv o on o.docentry = r.docentry
		where o.docnum = @invoice
	end
    if '@STORE1' ='65201'   -- Forecast
    begin
        select @forecast = '@STORE2'
			select @forecastid = absid from ofct where code = @forecast
			declare subloop cursor for
			select f.itemcode, sum(f.quantity), isnull(i.dfltwh,@whs)
			from fct1 f 
			inner join oitm i on i.itemcode = f.itemcode
			where f.absid = @forecastid
			group by f.itemcode, i.dfltwh
			open subloop
			fetch subloop into @item, @qtyforecast, @whs1
			while @@fetch_status = 0 
			begin
				insert into #itemlist
				values (@item, @whs1, @qtyforecast)
				fetch subloop into @item, @qtyforecast, @whs1
			end
			close subloop
			deallocate subloop
		end

	select @msg = 'N'

	select @disp = '*', @level = 0, @seq = 0, @order = 'Y', @committed = 'Y'

	declare mainloop cursor for
	select  parent, whs, isnull(qty,1)
	from	#Itemlist
	order by parent desc
	open mainloop
	fetch mainloop  into @NParent, @whs, @qty
	while @@fetch_status = 0
	begin	-- 4
			-- now let's explode the components of the item being sold - @item and then apply the logic to the colors
			select @FG = @NParent, @fgqty = @qty
			
			--delete #stack
			select @CLevel = 1, @count = 1
			select @seq = @seq + 1
			-- create a record in the stack for the finished good item 
			-- first step is to store the on hand
			if (select count(*) from #onhand where item = @fg and whs = @whs) = 0
				begin
					select @onhand = isnull(onhand,0), @onorder = isnull(onorder,0), @iscommitted = isnull(iscommited,0)
					from oitw where whscode = @whs and itemcode = @fg
					select @onhand2 = @onhand
					if @order = 'Y'
						select @onhand2 = @onhand + @onorder
					if @committed = 'Y' and @order = 'Y'
						select @onhand2 = @onhand - @iscommitted + @onorder
					if @committed = 'Y' and @order <> 'Y'
						select @onhand2 = @onhand - @iscommitted
					insert into #onhand
					values(@fg, @whs, @onhand, @onhand2)
				end
			else
				select @onhand = onhand, @onhand2 = onhand2 from #onhand where item = @fg and whs = @whs
			if @onhand >= @qty
				select @qtyreqd = 0
			else
				select @qtyreqd = @qty - @onhand
			if @onhand2 >= @qty
				select @qtyreqd2 = 0
			else
				select @qtyreqd2 = @qty - @onhand2
			update #onhand
			set onhand = onhand - @qty, onhand2 = onhand2 - @qty
			where item = @fg and whs = @whs
			update #onhand
			set onhand = 0
			where onhand < 0
			update #onhand
			set onhand2 = 0
			where onhand2 < 0
			insert into #stack
			(recnum, component, parent, FG, TLevel, quantity, itemdisp, sequence, childnum, qtyreqd, qtyreqd2, fgqty, onhand, onhand2)
			values (@seq, @FG, @FG, @FG, @CLevel, 1, @FG, 1, 0, @qtyreqd, @qtyreqd2, @fgqty, @onhand, @onhand2)
			select @firstrec = @seq

			if (select count(*) from itt1 where father = @NParent) = 0 -- no items to explode
				goto Exit_Loop

			select @cchild = 0
Get_Next_BOM:
			if @msg = 'Y'
				begin
					select @nparent as 'Parent', @cchild as 'Childnum', @clevel as 'Clevel','Get Next BOM'
				end

			if (select count(*) from [DBO].itt1 as bom
				where	bom.father = @NParent and bom.VisOrder = @cchild) = 0
					begin
						goto Step_Up_a_level
						if @msg = 'Y'
							begin
								select 'Not finding the BOM record', @nparent as 'Parent', @cchild as 'Childnum'
							end
						goto exit_loop
					end
			select	@component = Bom.code, 		-- child = component
					@quantity = bom.quantity * (select	top 1 ( isnull(#stack.quantity,0) )
									from	#stack 	where	#stack.component = @Nparent and
															#stack.TLevel = @CLevel order by recnum desc),
					@childnum = bom.VisOrder,
					@whscomp = bom.warehouse,
					@qtyneeded = bom.quantity * (select	top 1 ( isnull(#stack.qtyreqd,0) )
									from	#stack 	where	#stack.component = @Nparent and
															#stack.TLevel = @CLevel order by recnum desc),
					@qtyneeded2 = bom.quantity * (select	top 1 ( isnull(#stack.qtyreqd2,0) )
									from	#stack 	where	#stack.component = @Nparent and
															#stack.TLevel = @CLevel order by recnum desc)
			from	[DBO].itt1 as bom
			where	bom.father = @NParent and bom.VisOrder = @cchild

			select 	@level = @CLevel, @dispfull = ''
			while @level > 0
				begin
					select @dispfull = @disp + @dispfull
					select @level = @level - 1
				end	

			if @msg = 'Y'
				begin
					select 'Get next bom. Level = ', @Clevel as 'CLevel', ' Component: ', @component as Component, 
					' Qty: ', @quantity as 'Qty', ' Child Seq: ', @childnum as 'Childnum', @cchild as 'CChild'
				end

			-- first step is to store the on hand
			if (select count(*) from oitm where itemcode = @component) > 0		-- it is an item
			begin
				if (select count(*) from #onhand where item = @component and whs = @whscomp) = 0
					begin
						select @onhand = isnull(onhand,0), @onorder = isnull(onorder,0), @iscommitted = isnull(iscommited,0)
						from oitw where whscode = @whscomp and itemcode = @component
						select @onhand2 = @onhand
						if @order = 'Y'
							select @onhand2 = @onhand + @onorder
						if @committed = 'Y' and @order = 'Y'
							select @onhand2 = @onhand - @iscommitted + @onorder
						if @committed = 'Y' and @order <> 'Y'
							select @onhand2 = @onhand - @iscommitted
						insert into #onhand
						values(@component, @whscomp, @onhand, @onhand2)
					end
				else
					begin
						select @onhand = onhand, @onhand2 = onhand2
						from #onhand where item = @component and whs = @whscomp
					end
				if @onhand >= @qtyneeded
					select @qtyreqd = 0
				else
					select @qtyreqd = @qtyneeded - @onhand
				if @onhand2 >= @qtyneeded2
					select @qtyreqd2 = 0
				else
					select @qtyreqd2 = @qtyneeded2 - @onhand2

				update #onhand
				set onhand = onhand - @qtyneeded, onhand2 = onhand2 - @qtyneeded2
				where item = @component and whs = @whscomp

				update #onhand
				set onhand = 0
				where onhand < 0 and item = @component
				update #onhand
				set onhand2 = 0
				where onhand2 < 0  and item = @component
			end
			else -- means it is a resource
			begin
				select @onhand = 0, @onhand2 = 0, @order = 0, @committed = 0, @iscommitted = 0, @qtyreqd = @qtyneeded
			end
			select @seq = @seq + 1

			insert into #stack
			(recnum, component, parent, FG, TLevel, quantity, itemdisp, sequence, childnum, qtyreqd, qtyreqd2, fgqty, onhand, onhand2)
			values(@seq, @component, @Nparent, @FG, @CLevel + 1, @quantity, @dispfull+@component, 0, @childnum, @qtyreqd, @qtyreqd2, @fgqty, @onhand, @onhand2)
			-- does the component have children?
			if (select count(*) from itt1 where father = @component) > 0
				begin
					select @clevel = @clevel + 1, @cchild = 0, @Nparent = @component
					goto Get_Next_BOM	-- yes the component has children
				end
			-- no - does the parent have more children?
			if (select count(*) from itt1 where father = @nparent and VisOrder > @cchild) > 0
				begin	-- 
					select @cchild = @cchild + 1
					goto Get_Next_BOM
				end
			-- no the parent does not have any more children
Step_up_a_level:
			select top 1 @nparent = parent,
					@cchild = childnum + 1,
					@recnum = recnum
			from #stack 
			where component = @nparent and TLevel = @Clevel 
			order by recnum desc

			if @msg = 'Y'
				begin
					select 'Are we at end? = ', @nparent as 'NParent',@cchild as 'CChild', @recnum as 'Recnum', @firstrec as 'Firstrec',
							@Clevel as 'CLevel', @component as Component, 
							@quantity as 'Qty', @childnum as 'Childnum'
				end

			if @recnum = @firstrec -- back to the beginning
				begin
					goto Exit_Loop
				end

			select @Clevel = @clevel - 1
			goto Get_Next_BOM
				
Exit_Loop:
		fetch mainloop  into @NParent, @whs, @qty
	end
	close mainloop
	deallocate mainloop			

	select s.itemdisp as 'Indented Item'
		, s.fg as 'BOM FG'
		, s.parent as 'Parent Item'
		, ii.itemname as 'Parent Description'
		, s.component as 'Component Item'
		, case when cc.itemname is null then r.resname else cc.itemname end as 'Component Description'
		, cc.phantom as 'Phantom'
		, cc.cardcode as 'Default Vendor'
		, s.TLevel as 'Level in BOM'
		, s.qtyreqd as 'Qty Reqd'
		, isnull(c.onhand,0) as 'Component On Hand'
		, isnull(c.onorder,0) as 'Component on order'
		, isnull(c.iscommited,0) as 'Component Committed'
		, (isnull(c.onhand,0) + isnull(c.onorder,0) - isnull(c.iscommited,0)) as 'Net On Hand'
		, i.onhand as 'Parent On Hand' 
		, s.childnum
		, s.recnum
	from #stack s
	left join oitw i on i.itemcode = s.parent and i.whscode = @whs
	left join oitm ii on ii.ItemCode = i.itemcode
	left join oitw c on c.itemcode = s.component and c.whscode = @whs
	left join oitm cc on cc.itemcode = c.itemcode
	left join orsc r on r.rescode = @component
	order by s.recnum

drop table #stack
drop table #itemlist
drop table #onhand
drop table #peggedusage


[image: ]
[bookmark: _Toc138240219]Figure A-5 BOM-02 Where Used Report

Note: There are several hidden fields for this report.  There are actually 2 possible reports from this UF depending on how it is called.  It shows either the ‘Where Used’ report or the ‘Where Used Documents’ report.  The SQL associated with the Where Used report is shown below.
/*
    Where used BOM (BOM-03)
	Purpose:
	This routine performs a where used explode of all or a single item in the BOM.  This populates the table @DCMBOMEXPLODE with the results.  After this routine has been run, the BOM Explode queries can be run.

	altered to use temp tables						06/13/23	dcm
    Changed some of the logic                       06/15/23    dcm
*/
	declare @itemcode varchar(50), @document int, @whsdef varchar(8), 	@current_level int, @count int, @parentitemcode varchar(50), @nxtnum int
	, @component	varchar(50), @pitemcode	varchar(50), @stack_level int, @quantity numeric(19,6), @level int , @disp varchar(1), @dispfull varchar(70)
	, @sbocode varchar(8), @parent varchar(50), @msg varchar(1), @whs varchar(8), @qty numeric(19,6), @error int, @errmsg varchar(100), @Showdocuments varchar(1)

	CREATE TABLE #bomwhereused	(Code [nvarchar](30) NOT NULL, Component [nvarchar](50) NULL, Parent [nvarchar](50) NULL, FG [nvarchar](20) NULL, LevelNum [int] NULL, BOMQty [numeric](19, 6) NULL, DisplayItem [nvarchar](70) NULL)
	create table #stack (component varchar (50), pitemcode varchar (50), itemcode varchar (50), stack_level integer, quantity numeric (19, 6)) 
	create table #dcmbomexp (component varchar (50), pitemcode varchar (50), itemcode varchar (50), stack_level integer, quantity numeric (19, 6)) 
	create table #Itemlist
	(parent varchar(50), whs varchar(8), qty numeric(19,6))
	Create index IDX_parent ON #itemlist(parent)

	select @whsdef = dfltwhs from oadm
	select @msg = 'N'
	select @disp = '*'		-- this is the indent character
		, @Showdocuments = 'N'

	IF '@STORE3' = 'Y'
	begin
		select @Showdocuments = 'Y'	-- show documents
	end

    if '@STORE1' ='150'   -- item master
    begin
		select @itemcode = '@STORE2'
 		select @whs = DfltWH from oitm where itemcode = @itemcode
		if isnull(@whs,'') = '' select @whs = @whsdef
		insert into #itemlist
		select @itemcode, @whs, 1
    end
    if '@STORE1' ='142'   -- Purchase Order
    begin
        select @document = '@STORE2'
		insert into #itemlist
		select d.itemcode, d.whscode, d.quantity
		from opor h
		inner join por1 d on d.docentry = h.docentry
		where h.docnum = @document    
	end
    if '@STORE1' ='143'   -- PO Goods receipt
    begin
        select @document = '@STORE2'
		insert into #itemlist
		select d.itemcode, d.whscode, d.quantity
		from opdn h
		inner join pdn1 d on d.docentry = h.docentry
		where h.docnum = @document
	end

        --	Initialize next num to 0	
        select	@nxtnum = 0 

        declare mainloop cursor for
        select  parent, whs, isnull(qty,1)
        from	#Itemlist
        order by parent desc
        open mainloop
        fetch mainloop  into @itemcode, @whs, @qty
        while @@fetch_status = 0
        begin
            delete #stack
            select @current_level = 1
            insert into #stack
            values (@itemcode, @itemcode, @itemcode, @current_level, 1)

            select	@count = isnull(count(1),0)
            from	#stack 
            where	stack_level = @current_level
         
            while @count > 0
            begin
                if @msg = 'Y' select @count as 'Count'
                declare	parentitemcodes cursor for
                select	itemcode
                from	#stack
                where	stack_level = @current_level
                open	parentitemcodes
                fetch	parentitemcodes
                into	@parentitemcode
                while @@fetch_status = 0
                begin
                    insert into #stack
                    select	@itemcode, 
                        @parentitemcode,
                        bom.father,
                        @current_level + 1,
                        bom.quantity * (select	sum ( isnull(#stack.quantity,0) )
                                from	#stack
                                where	#stack.itemcode = @parentitemcode and
                                    #stack.stack_level = @current_level)
                    from	[DBO].itt1 as bom
                    where	bom.code = @parentitemcode 

                    fetch	parentitemcodes
                    into	@parentitemcode
                end
                close	parentitemcodes
                deallocate parentitemcodes

                select @current_level = @current_level + 1

                select	@count = isnull(count(1),0)
                from	#stack 
                where	stack_level = @current_level
            end
            insert	into #dcmbomexp
            (component, pitemcode, itemcode, quantity,stack_level) 
            select	component, pitemcode, itemcode, sum ( quantity ), max ( stack_level ) 
            from	#stack
            group by component, pitemcode, itemcode
            order by max ( stack_level )

            declare	resultcur cursor for
            select	component, pitemcode, itemcode, quantity, stack_level
            from #dcmbomexp			 
            open	resultcur
            fetch	resultcur into @component, @pitemcode, @itemcode, @quantity, @stack_level
            while	@@fetch_status = 0 
            begin
                select	@nxtnum = @nxtnum + 1
            
                insert into #bomwhereused
                (code, Component, parent, fg, bomqty, LevelNum) 
                select	right(('00000000'+convert(varchar,@nxtnum)),8),	@component,@pitemcode,@itemcode,@quantity,@stack_level
                fetch	resultcur into @component, @pitemcode, @itemcode, @quantity,@stack_level
            end
            close	resultcur
            deallocate resultcur
			delete #dcmbomexp

            fetch mainloop  into @itemcode, @whs, @qty
        end
        close mainloop 
        deallocate mainloop

        declare	storeloop cursor for
        select s.levelnum, s.fg, s.code
        from #bomwhereused s
        open	storeloop 
        fetch	storeloop into	@stack_level, @parent, @sbocode
        while @@fetch_status = 0
        begin	-- 9
            select 	@level = @stack_level - 1, @dispfull = ''
            while @level > 0
                begin
                    select @dispfull = @disp + @dispfull
                    select @level = @level - 1
                end	
            update #bomwhereused
            set displayitem = @dispfull + @parent
            where code = @sbocode
            fetch	storeloop into	@stack_level, @parent, @sbocode
        end
        close storeloop
        deallocate storeloop

		if @Showdocuments ='N'
		begin
			select  w.DisplayItem as 'Indented Where Used'
				, w.FG as 'Where used item'
				, f.itemname as 'Where used Item Description'
				, levelnum as 'BOM Level'
				, BOMQty as 'Qty of where used item reqd'
				, w.Component
				, ic.itemname as 'Component Description'
				, w.Parent
				, p.itemname as 'Parent Description'
			from #bomwhereused w
			inner join oitm ic on ic.itemcode = w.component collate SQL_Latin1_General_CP850_CI_AS
			inner join oitm p on p.itemcode = w.parent collate SQL_Latin1_General_CP850_CI_AS
			inner join oitm f on f.itemcode = w.fg collate SQL_Latin1_General_CP850_CI_AS
			order by w.LevelNum, w.parent
		end
		else
		begin         
			create table #dcmdocuments (Item varchar (50),Itemname varchar (100),Objectdesc varchar(20),Detailtype varchar(20), Document int
				, Cardcode varchar(20), Cardname varchar(100), PDO int, docdate datetime, OpenQty numeric(19,6),DueDate datetime,Whscode varchar(8)
                , Docentry int, objecttype varchar(20))
 
            declare doccursor cursor for
			select	distinct fg
			from	#bomwhereused
			open	Doccursor
			fetch	Doccursor into	@itemcode
			while @@fetch_status = 0
			begin
                -- PO
				insert  #dcmdocuments 	(Item, 	Itemname, OpenQty, DueDate, Objectdesc, Detailtype, Document, 
						Cardcode, Cardname, PDO, docdate,Whscode,Docentry,ObjectType ) 
					select @itemcode, d.dscription, d.openqty, d.shipdate, 'PO', '', h.docnum, 
						h.cardcode, h.cardname, 0, h.docdate, d.whscode, h.docentry, '22'
					from por1 d
					inner join opor h on h.docentry = d.docentry
					where h.docstatus = 'O' and h.canceled = 'N' and d.openqty > 0 and d.itemcode = @itemcode
				-- Sales Orders
				insert  #dcmdocuments 	(Item, 	Itemname, OpenQty, DueDate, Objectdesc, Detailtype, Document, Cardcode, Cardname, PDO,docdate,
							Whscode,Docentry,ObjectType) 
					select @itemcode, d.dscription, d.openqty, d.shipdate, 'Sales Order', '', h.docnum, h.cardcode, h.cardname, 0, h.docdate, 
							d.whscode, h.docentry, '17'
					from rdr1 d
					inner join ordr h on h.docentry = d.docentry
					where h.docstatus = 'O' and h.canceled = 'N' and d.openqty > 0  and d.itemcode = @itemcode
				-- PDOs
				insert  #dcmdocuments 	(Item, 	Itemname, OpenQty, DueDate, Objectdesc, Detailtype, Document, Cardcode, Cardname, PDO, docdate,
							Whscode,Docentry,ObjectType) 
					select @itemcode, i.itemname, d.plannedqty - d.cmpltqty, d.createdate, 'Production Order', 'Parent', 0, d.cardcode, c.cardname,d.docnum, d.postdate,
							d.warehouse, d.docentry,''
					from owor d
					inner join oitm i on i.itemcode = d.itemcode
					left join ocrd c on c.cardcode = d.cardcode
					where d.status = 'R' and d.cmpltqty < d.plannedqty  and d.itemcode = @itemcode
				fetch	Doccursor into	@itemcode
			end
			close doccursor
			deallocate doccursor

			select  'Documents' as 'Documents'
				, i.itemcode,
				d.Itemname as 'Item description', 
				d.OpenQty as 'Open Qty', 
				d.DueDate as 'Due Date', 
				d.Objectdesc as 'Document type', 
				d.Detailtype as 'Detail Type', 
                'Check Document' as 'Check Usage',
                '' as 'Spacer',
				d.Document, 
				c.Cardcode as 'BP Code', 
				d.Cardname as 'Vendor / Customer name', 
                d.pdo as 'PDO',
				d.Docdate as 'Document date',  
				d.Whscode as 'Whs',
                d.docentry,
                d.objecttype
			from #dcmdocuments d
			inner join oitm i on i.itemcode = item collate  SQL_Latin1_General_CP850_CI_AS
			left join ocrd c on c.cardcode = d.cardcode collate SQL_Latin1_General_CP850_CI_AS
			order by d.Objecttype, d.document, d.item
			for browse
			drop table #dcmdocuments
		end
	drop table #dcmbomexp
	drop table #stack
	drop table #bomwhereused
	drop table #itemlist

[image: ]
[bookmark: _Toc138240220]Figure A-6 Where Used Documents Report

Note: this UF sets a ‘Y’ value for the variable @STORE3 and then calls the where-used report. It forces the where used results to display the where-used documents information.


[bookmark: _Toc138240221]BOM Where Used and Indented BOM From BOM Form

[image: ]
[bookmark: _Toc138240222]Figure A-7 Validation Called from the BOM Form With BOM Reports Button

This validation calls the BOM-01 universal function shown in Figure A-3.  There are two possible options: 
· The BOM parent item approval flag (property 64 in item master) is set to ‘N’ – two reports are presented as options: Indented BOM (BOM-02); or Approval Status (BOM-12) report.
· The BOM parent item approval flag (property 64 in item master) is set to ‘Y’ – 2 options are presented: Indented BOM (BOM-02); or Approval UF (BOM-11).  The first is a report and the second updates the approval flags.
BOM-02 was discussed earlier and is the same as called from the item master.  
BOM-12 is the approval status report and is shown in Figure A-8.
[image: ]
[bookmark: _Toc138240223]Figure A-8 Approval Status Report

This report is similar to the Indented BOM report.  The unique SQL portion of the code is shown below.
	select s.itemdisp as 'Indented Item'
		, s.fg as 'BOM FG'
		, s.parent as 'Parent Item'
		, ii.itemname as 'Parent Description'
        , case when ii.qrygroup64 = 'Y' then 'Needs Approval' when ii.itemcode is null then '' else 'Approved' end as 'Approval Status - Parent'
		, s.component as 'Component Item'
		, case when cc.itemname is null then r.resname else cc.itemname end as 'Component Description'
        , case when cc.qrygroup64 = 'Y' then 'Needs Approval' when cc.itemcode is null then '' else 'Approved' end as 'Approval Status - Component'
        , case when cc.qrygroup64 = 'N' then b.u_dateapproved else '' end as 'Approval Date'
        , case when cc.qrygroup64 = 'N' then b.u_approvedby else '' end as 'Approved By'
		, cc.phantom as 'Phantom'
		, cc.cardcode as 'Default Vendor'
		, s.TLevel as 'Level in BOM'
		, s.qtyreqd as 'Qty Reqd'
		, isnull(c.onhand,0) as 'Component On Hand'
		, isnull(c.onorder,0) as 'Component on order'
		, isnull(c.iscommited,0) as 'Component Committed'
		, (isnull(c.onhand,0) + isnull(c.onorder,0) - isnull(c.iscommited,0)) as 'Net On Hand'
		, i.onhand as 'Parent On Hand' 
		, s.childnum
		, s.recnum
	from #stack s
	left join oitw i on i.itemcode = s.parent and i.whscode = @whs
	left join oitm ii on ii.ItemCode = i.itemcode
	left join oitw c on c.itemcode = s.component and c.whscode = @whs
	left join oitm cc on cc.itemcode = c.itemcode
	left join orsc r on r.rescode = @component
    left join oitt b on b.code = cc.itemcode
	order by s.recnum

drop table #stack
drop table #itemlist
drop table #onhand
drop table #peggedusage

[image: ] 
[bookmark: _Toc138240224]Figure A-9 Approval Process

The approval process resets the property 64 flag in the item master and then updates the BOM approve by and approval date fields. If the BOM has any components that are not BOMs themselves, then their property flag 64 is also reset. The approval is for this level of the assembly only – you must continue the approval process one assembly at a time.  Once this is complete, run the approval status report to confirm that all levels of the BOM have been approved.
[bookmark: _Toc138240225]BOM Report Access From Forecast

When the user clicks the ‘BOM Reports’ button on the MRP forecast form, the validation shown in Figure A-10 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  If you’re getting the idea that this UF is the gatekeeper for the BOM reporting – you’re correct!
[image: ]
[bookmark: _Toc138240226]Figure A-10 Access BOM Report From MRP Forecast Form

Within the BOM-01 universal function the macro stores the forecast id and then initiates the indented BOM report by calling the UF BOM-02.  It is passed the originating form – MRP Forecast – in the variable STORE1.  The variable STORE2 contains the Forecast id.  Within the BOM-02 reporting, the MRP Forecast is used to create a table of all items whose indented BOMs should be reported.  i.e. if you had 10 items in the forecast, the indented BOM for each of the 10 items would be reported.   Be careful – the forecast could have hundreds of items in the forecast.  It would be a messy, long report to show each indented BOM.  If there are too many, simply use the gold arrow for the item(s) on the MRP Forecast and run the indented BOM from the item master or BOM form.
[bookmark: _Toc138240227]BOM Report from Sales Document – Quote

When the user clicks the ‘BOM Reports’ button on the Sales Quote form, the validation shown in Figure A-11 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  
[image: ]
[bookmark: _Toc138240228]Figure A-11 Indented BOM Reporting from Sales Quote

Within the BOM-01 universal function the macro stores the sales quote number and then initiates the indented BOM report by calling the UF BOM-02.  It is passed the originating form – Sales Quote– in the variable STORE1.  The variable STORE2 contains the sales quote number.  If the quote contains 5 items, then 5 indented BOMs would be reported.
[bookmark: _Toc138240229]BOM Report from Sales Document – Sales Order

When the user clicks the ‘BOM Reports’ button on the Sales Quote form, the validation shown in Figure A-12 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  
[image: ]
[bookmark: _Toc138240230]Figure A-12 Indented BOM Reporting from Sales Order

Within the BOM-01 universal function the macro stores the sales order number and then initiates the indented BOM report by calling the UF BOM-02.  It is passed the originating form – Sales Order– in the variable STORE1.  The variable STORE2 contains the sales quote number.  If the sales order contains 5 items, then 5 indented BOMs would be reported.
[bookmark: _Toc138240231]BOM Report from Sales Document – Delivery Order

When the user clicks the ‘BOM Reports’ button on the Sales Quote form, the validation shown in Figure A-13 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  
[image: ]
[bookmark: _Toc138240232]Figure A-13 Indented BOM Reporting from Delivery Order

Within the BOM-01 universal function the macro stores the delivery order number and then initiates the indented BOM report by calling the UF BOM-02.  It is passed the originating form – Delivery Order– in the variable STORE1.  The variable STORE2 contains the sales quote number.  If the delivery order contains 5 items, then 5 indented BOMs would be reported.
[bookmark: _Toc138240233]BOM Report from Sales Document – Invoice

When the user clicks the ‘BOM Reports’ button on the Invoice form, the validation shown in Figure A-14 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  
[image: ]
[bookmark: _Toc138240234]Figure A-14 Indented BOM Reporting from Invoice 

Within the BOM-01 universal function the macro stores the Invoice number and then initiates the indented BOM report by calling the UF BOM-02.  It is passed the originating form – Invoice– in the variable STORE1.  The variable STORE2 contains the invoice number.  If the invoice contains 5 items, then 5 indented BOMs would be reported.
[bookmark: _Toc138240235]BOM Reports – from Purchase Order Goods Received

When the user clicks the ‘BOM Reports’ button on the PO Goods received form, the validation shown in Figure A-15 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  
[image: ]
[bookmark: _Toc138240236]Figure A-15 Where Used Reporting from PO Goods Received 

Within the BOM-01 universal function the macro stores the PO Goods Received number and then shows a popup providing the user the choice of displaying either the Where-Used report or the Where-Used Documents report. These reports are passed the originating form – PO Goods Receipt– in the variable STORE1.  The variable STORE2 contains the PO Goods Receipt number.  If the PO Goods Receipt  contains 5 items, then 5 where used items would be reported.

[bookmark: _Toc138240237]BOM Reports – from Purchase Order

When the user clicks the ‘BOM Reports’ button on the PO form, the validation shown in Figure A-16 is invoked.  It calls the ‘familiar’ BOM-01 universal function.  
[image: ]
[bookmark: _Toc138240238]Figure A-16 Where Used Reporting from PO 

Within the BOM-01 universal function the macro stores the PO number and then shows a popup providing the user the choice of displaying either the Where-Used report or the Where-Used Documents report. These reports are passed the originating form – PO– in the variable STORE1.  The variable STORE2 contains the PO number.  If the PO contains 5 items, then 5 where used items would be reported.





[bookmark: _Toc138240239]Engr Revision Placed on PDO During Add

This B1 Validation places the engineering revision for an item which is stored in the item master on the PDO screen.  Figure A-17 shows the B1 Validation.  The UF BOM-05 is shown in Figure A-18.
[image: ]
[bookmark: _Toc138240240]Figure A-17 Placing the Engineering Revision on the PDO for the Item Manufactured

[image: ]
[bookmark: _Toc138240241]Figure A-18 Macro Placing the Engineering Revision on the PDO

[bookmark: _Toc138240242]Set Engineering Revision for Items Being Sold

The B1 Validation for setting the engineering revision on the sales quote, sales order, delivery order and invoicing forms is shown in Figure A-19.  As items are added to these documents the engineering revision is included in the document line item information.
[image: ]
[bookmark: _Toc138240243]Figure A-19 Sales Documents – Setting the Engineering Revision

[image: ]
[bookmark: _Toc138240244]Figure A-20 Setting the Engineering Revision on Sales Documents

[bookmark: _Toc138240245]Lookup Engineering Revisions for a Customer – Part

The business reason for maintaining engineering revision information for every sale is so you can readily look up information for customer – part issues – and always get to the correct engineering revision drawings quickly.   The B1 Validation that is called when the ‘Engr Rev Lookup’ button is clicked on the business partner master form is shown in Figure A-21.  The reporting UF BOM-07 is shown in Figure A-22.  The report produced is shown in Figure A-23.
[image: ]
[bookmark: _Toc138240246]Figure A-21 Show Engineering Revision History By Customer – Part

[image: ]
[bookmark: _Toc138240247]Figure A-22 Show Engineering Revision History By Customer – Part

[image: ]
[bookmark: _Toc138240248]Figure A-23 Engineering Revision History By Customer – Part

[bookmark: _Toc138240249]Resource Lookup

When changing BOMs, the resources often need to be changed as well.  The resource lookup provides a means to look at which BOMs are using specific resources.  Figure A-24 shows the validation called from the ‘Resource Master’ form when the user clicks on the ‘Resource Lookup Button’.    Figure A-25 is the UF BOM-08 which displays the report of resource usage.
[image: ]
[bookmark: _Toc138240250]Figure A-24 Validation Called When Resource Lookup Button Clicked

[image: ]
[bookmark: _Toc138240251]Figure A-25 Resource Lookup Report

[bookmark: _Toc138240252]Color the item field when property 64 is set – Item Master 

If the user sets property 64 to ‘checked’ for an item this validation is called when the item is loaded into the item master form.  This validation is shown in Figure A-26. 
[image: ]
[bookmark: _Toc138240253]Figure A-26 Validation for Color of Item

Depending on the value of the property 64 flag, the item background is either set to red or white.  The universal functions to set the color are shown in Figures A-27 and A-28.
[image: ]
[bookmark: _Toc138240254]Figure A-27 Set Background Color to Red

[bookmark: _Toc138240255]Color the item field when property 64 is set – BOM Form 

If the user sets property 64 to ‘checked’ for an item this validation is called when the item is loaded into the BOM form.  This validation is shown in Figure A-28. 
[image: ]
[bookmark: _Toc138240256]Figure A-28 Validation for Color of Item

Depending on the value of the property 64 flag, the item background is either set to red or white.  The universal functions to set the color are shown in Figures A-29 and A-30.
[image: ]
[bookmark: _Toc138240257]Figure A-29 Set Background Color to Red





[image: ]
[bookmark: _Toc138240258]Figure A-30 Set Background Color to White

[bookmark: _Toc138240259]Item Placement Tool Changes
The forms were modified to move user defined fields to the main forms.  Buttons were added for the BOM Reports on several forms.  These changes are shown below. Note: for most forms the ‘buttons’ added are only active when in ‘Edit OK’ mode.
[image: ]
[bookmark: _Toc138240260]Figure A-31 Sales Order Form – Add Button ‘BOM Reports’

[image: ]
[bookmark: _Toc138240261]Figure A-32 Sales Order Quote Form – Add Button ‘BOM Reports’

[image: ][image: ]
[bookmark: _Toc138240262]Figure A-33 Production Order Form – Add Engineering Revision UDF

[image: ]
[bookmark: _Toc138240263]Figure A-34 Delivery Order Form – Add Button ‘BOM Reports’

[image: ]
[bookmark: _Toc138240264]Figure A-35 Business Partner Form – Add Button ‘Engr Rev Lookup’

[image: ]
[bookmark: _Toc138240265]Figure A-36 Item Master Form – Add Button + UDF

[image: ]
[bookmark: _Toc138240266]Figure A-37 BOM Form – Add Button + 2 UDFs

[image: ]
[bookmark: _Toc138240267]Figure A-38 Forecast Form – Add Button

[image: ]
[bookmark: _Toc138240268]Figure A-39 A/R Invoice Form – Add Button

[image: ]
[bookmark: _Toc138240269]Figure A-40 Purchase Order Form – Add Button

[image: ]
[bookmark: _Toc138240270]Figure A-41 Purchase Order Goods Receipt Form – Add Button

[image: ]
[bookmark: _Toc138240271]Figure A-42 Resource Master Form – Add Button




image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image1.png

image2.png

